532 research outputs found

    Strain-controlled correlation effects in self-assembled quantum dot stacks

    Full text link
    We show that elastic interactions of an array of self-assembled quantum dots in a parent material matrix are markedly distinct from the elastic field created by a single point defect, and can explain the observed abrupt correlation--anticorrelation transition in semiconductor quantum dot stacks. Finite volume effects of the quantum dots are shown to lead to sharper transitions. Our analysis also predicts the inclination angle under which the alignment in successive quantum dot layers occurs in dependence on the material anisotropy

    Phase field simulations of coupled phase transformations in ferroelastic-ferroelastic nanocomposites

    Full text link
    We use phase field simulations to study composites made of two different ferroelastics (e.g., two types of martensite). The deformation of one material due to a phase transformation can elastically affect the other constituent and induce it to transform as well. We show that the phase transformation can then occur above its normal critical temperature and even higher above this temperature in nanocomposites than in bulk composites. Microstructures depend on temperature, on the thickness of the layers, and on the crystal structure of the two constituents -- certain nanocomposites exhibit a great diversity of microstructures not found in bulk composites. Also, the periodicity of the martensite twins may vary over 1 order of magnitude based on geometry. keywords: Ginzburg-Landau, martensitic transformation, multi-ferroics, nanostructure, shape-memory alloyComment: 8 pages, 15 figure

    Dynamics of mesoscopic precipitate lattices in phase separating alloys under external load

    Full text link
    We investigate, via three-dimensional atomistic computer simulations, phase separation in an alloy under external load. A regular two-dimensional array of cylindrical precipitates, forming a mesoscopic precipitate lattice, evolves in the case of applied tensile stress by the movement of mesoscopic lattice defects. A striking similarity to ordinary crystals is found in the movement of "meso-dislocations", but new mechanisms are also observed. Point defects such as "meso-vacancies" or "meso-interstitials" are created or annihilated locally by merging and splitting of precipitates. When the system is subjected to compressive stress, we observe stacking faults in the mesoscopic one-dimensional array of plate-like precipitates.Comment: 4 pages, 4 figures, REVTE

    Phase transition in compressible Ising systems at fixed volume

    Full text link
    Using a Ginzburg-Landau model, we study the phase transition behavior of compressible Ising systems at constant volume by varying the temperature TT and the applied magnetic field hh. We show that two phases can coexist macroscopically in equilibrium within a closed region in the TT-hh plane. It occurence is favored near tricriticality. We find a field-induced critical point, where the correlation length diverges, the difference of the coexisting two phases and the surface tension vanish, but the isothermal magnetic susceptibility does not diverge in the mean field theory. We also investigate phase ordering numerically.Comment: 13 figure

    Elastic domains in antiferromagnets

    Get PDF
    We consider periodic domain structures which appear due to the magnetoelastic interaction if the antiferromagnetic crystal is attached to an elastic substrate. The peculiar behavior of such structures in an external magnetic field is discussed. In particular, we find the magnetic field dependence of the equilibrium period and the concentrations of different domains

    From nonlinear to linearized elasticity via Γ-convergence: the case of multiwell energies satisfying weak coercivity conditions

    Get PDF
    Linearized elasticity models are derived, via Γ-convergence, from suitably rescaled non- linear energies when the corresponding energy densities have a multiwell structure and satisfy a weak coercivity condition, in the sense that the typical quadratic bound from below is replaced by a weaker p bound, 1 < p < 2, away from the wells. This study is motivated by, and our results are applied to, energies arising in the modeling of nematic elastomers

    Influence of Strain on the Kinetics of Phase Transitions in Solids

    Get PDF
    We consider a sharp interface kinetic model of phase transitions accompanied by elastic strain, together with its phase-field realization. Quantitative results for the steady-state growth of a new phase in a strip geometry are obtained and different pattern formation processes in this system are investigated
    • …
    corecore